Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.687
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38563166

RESUMO

Objective:To analyze the mutation spectrum of 23-site chip newborn deafness genetic screening in Beijing, and to provide basis for genetic counseling and clinical diagnosis and treatment. Methods:The study included 21 006 babies born in Beijing from December 2022 to June 2023. All subjects underwent newborn deafness genetic screening in Beijing Tongren Hospital, covering 23 variants in 4 genes, the GJB2 gene(c.35delG, c.176_191del16, c.235delC, c.299_300delAT, c.109G>A, c.257C>G, c.512insAACG, c.427C>T, c.35insG), SLC26A4 gene(c.919-2A>G, c.2168A>G, c.1174A>T, c.1226G>A, c.1229C>T, c.1975G>C, c.2027T>A, c.589G>A, c.1707+5G>A, c.917insG, c.281C>T), Mt12SrRNA(m.1555A>G, m.1494C>T) and GJB3 gene(c.538C>T). The mutation detection rate and allele frequency were analyzed. Results:The overall mutation detection rate was 11.516%(2 419/21 006), with the GJB2 gene being the most frequently involved at 9.097%(1 911/21 006), followed by the SLC26A4 gene at 2.123%(446/21 006), the GJB3 gene at 0.362%(76/21 006) and Mt12SrRNA at 0.176%(37/21 006). Among the GJB2 genes, c.109G>A and c.235delC mutation detection rates were the highest, with 6.579%(1 382/21 006) and 1.795%(377/21 006), respectively. Of the SLC26A4 genes, c.919-2A>G and c.2168A>G had the highest mutation rates of 1.423%(299/21 006) and 0.233%(49/21 106), respectively. Regarding the allele frequency, GJB2 c.109G>A was the most common variant with an allele frequency of 3.359%(1 411/42 012), followed by the GJB2 c.235delC at 0.897%(377/42 012) and the SLC26A4 c.919-2A>G at 0.719%(302/42 012). Conclusion:23-site chip newborn deafness genetic screening in Beijing showed that GJB2 c.109G>A mutation detection rate and allele frequency were the highest. This study has enriched the epidemiological data of 23-site chip genetic screening mutation profiles for neonatal deafness, which can provide evidence for clinical practice.


Assuntos
Surdez , Perda Auditiva , Lactente , Recém-Nascido , Humanos , Conexinas/genética , Conexina 26/genética , Surdez/genética , Surdez/diagnóstico , Análise Mutacional de DNA , Transportadores de Sulfato/genética , Testes Genéticos , Mutação , Perda Auditiva/genética , Triagem Neonatal , China
2.
Cancer Med ; 13(7): e7021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562019

RESUMO

OBJECTIVE: Non-small-cell lung cancer (NSCLC) is a deadly form of cancer that exhibits extensive intercellular communication which contributed to chemoradiotherapy resistance. Recent evidence suggests that arrange of key proteins are involved in lung cancer progression, including gap junction proteins (GJPs). METHODS AND RESULTS: In this study, we examined the expression patterns of GJPs in NSCLC, uncovering that both gap junction protein, beta 2 (GJB2) and gap junction protein, beta 2 (GJB3) are increased in LUAD and LUSC. We observed a correlation between the upregulation of GJB2, GJB3 in clinical samples and a worse prognosis in patients with NSCLC. By examining the mechanics, we additionally discovered that nuclear factor erythroid-2-related factor 1 (NFE2L1) had the capability to enhance the expression of connexin26 and connexin 31 in the NSCLC cell line A549. In addition, the use of metformin was discovered to cause significant downregulation of gap junction protein, betas (GJBs) by limiting the presence of NFE2L1 in the cytoplasm. CONCLUSION: This emphasizes the potential of targeting GJBs as a viable treatment approach for NSCLC patients receiving metformin.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metformina , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Conexinas/genética , Conexinas/metabolismo , Conexinas/uso terapêutico , Junções Comunicantes/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo
3.
Methods Mol Biol ; 2801: 17-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578410

RESUMO

Extracellular vesicles (EVs) are recognized as major vehicles for exchange of information across distant cells and tissues, which have been extensively explored for diagnosis and therapeutic purposes. The presence of multiple connexin (Cx) proteins has been described in EVs, where they might facilitate EV-cell communication. However, quantitative changes in Cx levels and functional assessment of Cx channels have only been established for Cx43. In present work, we provide a detailed description of the protocols we have optimized to assess the expression and permeability of Cx43 channels in EVs derived from cultured cells and human peripheral blood. Particularly, we include some modifications to improve quantitative analysis of EV-Cx43 by enzyme-linked immunosorbent assay (ELISA) and assessment of channel functionality by sucrose-density gradient ultracentrifugation, which can be easily adapted to other Cx family members, leveraging the development of diagnostic and therapeutic applications based on Cx-containing EVs.


Assuntos
Conexinas , Vesículas Extracelulares , Humanos , Conexinas/genética , Conexinas/metabolismo , Conexina 43/metabolismo , Vesículas Extracelulares/metabolismo
4.
Methods Mol Biol ; 2801: 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578409

RESUMO

Connexins are the proteins that form the gap junction channels that are essential for cell-to-cell communication. These channels are formed by head-to-head docking of hemichannels (each from one of two adjacent cells). Free "undocked" hemichannels at the plasma membrane are mostly closed, although they are still important under physiological conditions. However, abnormal and sustained increase in hemichannel activity due to connexin mutations or acquired conditions can produce or contribute to cell damage. For example, mutations of Cx26, a connexin isoform, can increase hemichannel activity and cause deafness. Studies using purified isolated systems under well-controlled conditions are essential for a full understanding of molecular mechanisms of hemichannel function under normal conditions and in disease, and here, we present methodology for the expression, purification, and functional analysis of hemichannels formed by Cx26.


Assuntos
Conexinas , Junções Comunicantes , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Fenômenos Biofísicos
5.
Methods Mol Biol ; 2801: 125-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578418

RESUMO

Connexins (Cxs) are transmembrane proteins which form hemichannels and gap junction channels at the plasma membrane. These channels allow the exchange of ions and molecules between the intra- and extracellular space and between cytoplasm of adjacent cells, respectively. The channel function of Cx assemblies has been extensively studied; however, "noncanonical" functions have emerged in the last few decades and have capture the attentions of many researchers, including the role of some Cxs as gene modulators or transcription factors. In this chapter, we describe a protocol to study the interaction of Cx46 with DNA in HeLa cells. These methods can facilitate understanding the role of Cxs in physiological processes and pathological mechanisms, including, for example, the contribution of Cx46 in maintaining stemness of glioma cancer stem cells.


Assuntos
Conexinas , Canais Iônicos , Humanos , Conexinas/genética , Conexinas/metabolismo , Células HeLa , Junções Comunicantes/metabolismo , DNA/genética
6.
Methods Mol Biol ; 2801: 135-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578419

RESUMO

Gap junctions, pivotal intercellular conduits, serve as communication channels between adjacent cells, playing a critical role in modulating membrane potential distribution across cellular networks. The family of Pannexin (Panx) proteins, in particular Pannexin1 (Panx1), are widely expressed in vertebrate cells and exhibit sequence homology with innexins, the invertebrate gap junction channel constituents. Despite being ubiquitously expressed, detailed functional and pharmacological properties of Panx1 intercellular cell-cell channels require further investigation. In this chapter, we introduce optimized cell culture methodologies and electrophysiology protocols to expedite the exploration of endogenous Panx1 cell-cell channels in TC620 cells, a human oligodendroglioma cell line that naturally expresses Panx1. We anticipate these refined protocols will significantly contribute to future characterizations of Panx1-based intercellular cell-cell channels across diverse cell types and offer valuable insights into both normal cellular physiology and pathophysiology.


Assuntos
Conexinas , Junções Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Linhagem Celular , Canais Iônicos/metabolismo , Potenciais da Membrana
7.
Methods Mol Biol ; 2801: 97-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578416

RESUMO

Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.


Assuntos
Conexina 43 , Conexinas , Conexinas/genética , Conexinas/metabolismo , Conexina 43/metabolismo , Transporte Biológico , Cálcio/metabolismo
8.
Methods Mol Biol ; 2801: 147-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578420

RESUMO

Stable cell pools have the advantage of providing a definite, consistent, and reproducible transmission of a transgene of interest, compared to transient expression from a plasmid transfection. Stably expressing a transgene of interest in cells under induction is a powerful way to (switch on and) study a gene function in both in vitro and in vivo assays. Taking advantage of the ability of lentivirus (LV) to promote transgene delivery, and genomic integration and expression in both dividing and nondividing cells, a doxycycline-inducible transfer vector expressing a bicistronic transgene was developed to study the function of connexins in HeLa DH cells. Here, delving on connexin 32 (Cx32), we report how to use the backbone of this vector as a tool to generate stable pools to study the function of a gene of interest (GOI), especially with assays involving Ca2+ imaging, employing the GCaMP6s indicator. We describe a step-by-step protocol to produce the LV particle by transient transfection and the direct use of the harvested LV stock to generate stable cell pools. We further present step-by-step immunolabeling protocols to characterize the transgene protein expression by confocal microscopy using an antibody that targets an extracellular domain epitope of Cx32 in living cells, and in fixed permeabilized cells using high affinity anti-Cx32 antibodies. Using common molecular biology laboratory techniques, this protocol can be adapted to generate stable pools expressing any transgene of interest, for both in vitro and in vivo functional assays, including molecular, immune, and optical assays.


Assuntos
Conexinas , 60543 , Humanos , Conexinas/genética , Conexinas/metabolismo , Transfecção , Células HeLa , Transgenes
9.
Methods Mol Biol ; 2801: 189-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578422

RESUMO

The opening of connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells is regulated by a number of physiological parameters, including extracellular and intracellular Ca2+ ions. Submicromolar variations of the cytosolic Ca2+ concentration ([Ca2+]c) are per se sufficient to trigger extracellular bursts of messenger molecules through connexin HCs, thus mediating paracrine signaling. In this chapter, we present a quantitative method to measure the opening dynamics of connexin HCs expressed in a single HeLa cell upon stimulation by a canonical InsP3-mediated [Ca2+]c transient. The protocol relies on a combination of Ca2+ imaging and patch-clamp techniques. The insights gained from our method are expected to make a significant contribution to understanding the structure-function relationship of connexin HCs. The protocol is also suitable to screen candidate therapeutic compounds to treat connexin-related diseases linked to HC dysfunction.


Assuntos
Cálcio , Conexinas , Animais , Humanos , Conexinas/genética , Conexinas/metabolismo , Células HeLa , Cálcio/metabolismo , Citosol/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
10.
BMC Genomics ; 25(1): 359, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605287

RESUMO

Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.


Assuntos
Conexinas , Perda Auditiva , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Conexina 30/genética , Conexina 26/genética , Conexinas/genética , Perda Auditiva/genética , Fenótipo , Mutação
11.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533727

RESUMO

Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.


Assuntos
Conexinas , Animais , Comunicação Celular/fisiologia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Queratinócitos/metabolismo , Mamíferos/metabolismo , Humanos
12.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538230

RESUMO

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Paclitaxel/efeitos adversos , Carragenina/efeitos adversos , Cálcio , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Formaldeído/efeitos adversos , Gânglios Espinais , Proteínas do Tecido Nervoso , Conexinas/genética , Conexinas/uso terapêutico
13.
Mol Oncol ; 18(4): 969-987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327091

RESUMO

Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Conexinas/genética , Conexinas/uso terapêutico , Linfócitos do Interstício Tumoral , Melanoma/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral
14.
Genes (Basel) ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397168

RESUMO

Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births, with ~50-60% of those related to genetic causes. Technological advances enabled the identification of hundreds of genes related to hearing loss (HL), with important implications for patients, their families, and the community. Despite these advances, in Latin America, the population with hearing loss remains underdiagnosed, with most studies focusing on a single locus encompassing the GJB2/GJB6 genes. Here we discuss how current and emerging genetic knowledge has the potential to alter the approach to diagnosis and management of hearing loss, which is the current situation in Latin America, and the barriers that still need to be overcome.


Assuntos
Surdez , Perda Auditiva , Humanos , Conexinas/genética , Conexina 26/genética , Mutação , América Latina/epidemiologia , Testes Genéticos , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Surdez/diagnóstico , Surdez/genética
15.
Nature ; 626(8001): 1102-1107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355795

RESUMO

Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.


Assuntos
Trifosfato de Adenosina , Células da Medula Óssea , Plasmócitos , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Autoanticorpos/imunologia , Autoimunidade/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mutação , Osteoblastos/metabolismo , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais
16.
Hear Res ; 444: 108971, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359484

RESUMO

Age-related hearing loss (ARHL), also known as presbycusis, is the number one communication disorder for aging adults. Connexin proteins are essential for intercellular communication throughout the human body, including the cochlea. Mutations in connexin genes have been linked to human syndromic and nonsyndromic deafness; thus, we hypothesize that changes in connexin gene and protein expression with age are involved in the etiology of ARHL. Here, connexin gene and protein expression changes for CBA/CaJ mice at different ages were examined, and correlations were analyzed between the changes in expression levels and functional hearing measures, such as ABRs and DPOAEs. Moreover, we investigated potential treatment options for ARHL. Results showed significant downregulation of Cx30 and Cx43 gene expression and significant correlations between the degree of hearing loss and the changes in gene expression for both genes. Moreover, dose-dependent treatments utilizing cochlear cell lines showed that aldosterone hormone therapy significantly increased Cx expression. In vivo mouse treatments with aldosterone also showed protective effects on connexin expression in aging mice. Based on these functionally relevant findings, next steps can include more investigations of the mechanisms related to connexin family gap junction protein expression changes during ARHL; and expand knowledge of clinically-relevant treatment options by knowing what specific members of the Cx family and related inter-cellular proteins should be targeted therapeutically.


Assuntos
Presbiacusia , Humanos , Adulto , Camundongos , Animais , Conexina 30/metabolismo , Conexina 26 , Presbiacusia/genética , Presbiacusia/metabolismo , Aldosterona , Camundongos Endogâmicos CBA , Conexinas/genética , Conexinas/metabolismo , Cóclea/fisiologia , Junções Comunicantes/metabolismo
17.
BMC Med Genomics ; 17(1): 55, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378613

RESUMO

BACKGROUND: Gene variants are responsible for more than half of hearing loss, particularly in nonsyndromic hearing loss (NSHL). The most common pathogenic variant in SLC26A4 gene found in East Asian populations is c.919-2A > G followed by c.2168A > G (p.H723R). This study was to evaluate their variant frequencies in patients with NSHL from special education schools in nine different areas of Southwest China's Yunnan. METHODS: We performed molecular characterization by PCR-products directly Sanger sequencing of the SLC26A4 c.919-2AG and c.2168 A > G variants in 1167 patients with NSHL including 533 Han Chinese and 634 ethnic minorities. RESULTS: The SLC26A4 c.919-2A > G variant was discovered in 8 patients with a homozygous state (0.69%) and twenty-five heterozygous (2.14%) in 1167 patients with NSHL. The total carrier rate of the c.919-2A > G variant was found in Han Chinese patients with 4.50% and ethnic minority patients with 1.42%. A significant difference existed between the two groups (P < 0.05). The c.919-2A > G allele variant frequency was ranged from 3.93% in Kunming to zero in Lincang and Nvjiang areas of Yunnan. We further detected the SLC26A4 c.2168 A > G variant in this cohort with one homozygotes (0.09%) and seven heterozygotes (0.60%), which was detected in Baoshan, Honghe, Licang and Pu`er areas. Between Han Chinese group (0.94%) and ethnic minority group (0.47%), there was no statistical significance (P > 0.05). Three Han Chinese patients (0.26%) carried compound heterozygosity for c.919-2A > G and c.2168 A > G. CONCLUSION: These data suggest that the variants in both SLC26A4 c.919-2A > G and c.2168 A > G were relatively less frequencies in this cohort compared to the average levels in most regions of China, as well as significantly lower than that in Han-Chinese patients. These results broadened Chinese population genetic information resources and provided more detailed information for regional genetic counselling for Yunnan.


Assuntos
Surdez , Etnicidade , Proteínas de Membrana Transportadoras , Humanos , Etnicidade/genética , Mutação , Proteínas de Membrana Transportadoras/genética , Grupos Minoritários , China/epidemiologia , Conexinas/genética , Transportadores de Sulfato/genética
18.
Sci Rep ; 14(1): 4202, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378725

RESUMO

Hearing loss is the most predominant sensory defect occurring in pediatrics, of which, 66% cases are attributed to genetic factors. The prevalence of hereditary hearing loss increases in consanguineous populations, and the prevalence of hearing loss in Qatar is 5.2%. We aimed to investigate the genetic basis of nonsyndromic hearing loss (NSHL) in Qatar and to evaluate the diagnostic yield of different genetic tests available. A retrospective chart review was conducted for 59 pediatric patients with NSHL referred to the Department of Adult and Pediatric Medical Genetics at Hamad Medical Corporation in Qatar, and who underwent at least one genetic test. Out of the 59 patients, 39 were solved cases due to 19 variants in 11 genes and two copy number variants that explained the NSHL phenotype. Of them 2 cases were initially uncertain and were reclassified using familial segregation. Around 36.8% of the single variants were in GJB2 gene and c.35delG was the most common recurrent variant seen in solved cases. We detected the c.283C > T variant in FGF3 that was seen in a Qatari patient and found to be associated with NSHL for the first time. The overall diagnostic yield was 30.7%, and the diagnostic yield was significantly associated with genetic testing using GJB2 sequencing and using the hearing loss (HL) gene panel. The diagnostic yield for targeted familial testing was 60% (n = 3 patients) and for gene panel was 50% (n = 5). Thus, we recommend using GJB2 gene sequencing as a first-tier genetic test and HL gene panel as a second-tier genetic test for NSHL. Our work provided new insights into the genetic pool of NSHL among Arabs and highlights its unique diversity, this is believed to help further in the diagnostic and management options for NSHL Arab patients.


Assuntos
Surdez , Perda Auditiva , Adulto , Humanos , Criança , Conexinas/genética , Conexina 26/genética , Mutação , Estudos Retrospectivos , Catar , Surdez/genética , Testes Genéticos , Perda Auditiva/diagnóstico , Perda Auditiva/genética
19.
Artigo em Chinês | MEDLINE | ID: mdl-38297844

RESUMO

Objective:To analyze genetic factors and phenotype characteristics in pediatric population with slight-to-moderate sensorineural hearing loss. Methods:Children with slight-to-moderate sensorineural hearing loss of and their parents, enrolled from the Chinese Deafness Genome Project, were studied. Hearing levels were assessed using pure tone audiometry, behavioral audiometry, auditory steady state response(ASSR), auditory brainstem response(ABR) thresholds, and deformed partial otoacoustic emission(DPOAE). Classification of hearing loss is according to the 2022 American College of Medical Genetics and Genomics(ACMG) Clinical Practice Guidelines for Hearing Loss. Whole exome sequencing(WES) and deafness gene Panel testing were performed on peripheral venous blood from probands and validations were performed on their parents by Sanger sequencing. Results:All 134 patients had childhood onset, exhibiting bilateral symmetrical slight-to-moderate sensorineural hearing loss, as indicated by audiological examinations. Of the 134 patients, 29(21.6%) had a family history of hearing loss, and the rest were sporadic patients. Genetic causative genes were identified in 66(49.3%) patients. A total of 11 causative genes were detected, of which GJB2 was causative in 34 cases(51.5%), STRC in 10 cases(15.1%), MPZL2 gene in six cases(9.1%), and USH2A in five cases(7.6%).The most common gene detected in slight-to-moderate hearing loss was GJB2, with c. 109G>A homozygous mutation found in 16 cases(47.1%) and c. 109G>A compound heterozygous mutation in 9 cases(26.5%). Conclusion:This study provides a crucial genetic theory reference for early screening and detection of mild to moderate hearing loss in children, highlighting the predominance of recessive inheritance and the significance of gene like GJB2, STRC, MPZL2, USH2A.


Assuntos
Perda Auditiva Neurossensorial , Síndromes de Usher , Humanos , Criança , Conexinas/genética , Conexina 26/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/diagnóstico , Mutação , Perda Auditiva Bilateral , Audiometria de Tons Puros , Peptídeos e Proteínas de Sinalização Intercelular
20.
Artigo em Chinês | MEDLINE | ID: mdl-38297845

RESUMO

Objective:To elucidate the correlation between the GJB2 gene and auditory neuropathy, aiming to provide valuable insights for genetic counseling of affected individuals and their families. Methods:The general information, audiological data(including pure tone audiometry, distorted otoacoustic emission, auditory brainstem response, electrocochlography), imaging data and genetic test data of 117 auditory neuropathy patients, and the patients with GJB2 gene mutation were screened out for the correlation analysis of auditory neuropathy. Results:Total of 16 patients were found to have GJB2 gene mutations, all of which were pathogenic or likely pathogenic.was Among them, one patient had compound heterozygous variants GJB2[c. 427C>T][c. 358_360del], exhibiting total deafness. One was GJB2[c. 299_300delAT][c. 35_36insG]compound heterozygous variants, the audiological findings were severe hearing loss.The remaining 14 patients with GJB2 gene variants exhibited typical auditory neuropathy. Conclusion:In this study, the relationship between GJB2 gene and auditory neuropathy was preliminarily analyzed,and explained the possible pathogenic mechanism of GJB2 gene variants that may be related to auditory neuropathy.


Assuntos
Surdez , Perda Auditiva Central , Humanos , Conexinas/genética , Conexina 26/genética , Perda Auditiva Central/genética , Surdez/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...